查看: 2514|回复: 0
打印 上一主题 下一主题

射频识别系统模型

[复制链接]
跳转到指定楼层
沙发
发表于 2015-3-14 15:58:34 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
RFID的组成部分
[摘要]最基本的RFID系统由三部分组成。
标签(Tag):由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象;
阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式或固定式;
天线(Antenna):在标签和读取器间传递射频信号。
电子标签中一般保存有约定格式的电子数据,在实际应用中,电子标签附着在待识别物体的表面。
读器可无接触地读取并识别电子标签中所保存的电子数据,从而达到自动识别体的目的。通常阅读器与电脑相连,所读取的标签信息被传送到电脑上进行下一步处理。
射频识别系统模型
[摘要]射频识别系统工作过程中,空间传输通道中发生的过程可归结为三种事件模型,本文以此三种事件模型的描述来介绍射频识别系统的典型工作方式与工作流程。
射频标签(射频标签)与阅读器(读写器)之间通过两者的天线架起空间电磁波传输的通道。
细分射频标签与阅读器之间的电磁耦合,包含两种情况:即近距离的电感耦合与远距离的电磁耦合。在电感耦合方式中,阅读器一方的天线相当于变压器的初级线圈,射频标签一方的天线相当于变压器的次级,因而也称电感耦合方式为变压器方式。电感耦合方式的耦合中介是空间磁场,耦合磁场在阅读器线圈初级与射频标签线圈次级之间沟成闭合回路。电感耦合方式是低频近距离无接触射频识别系统的一般耦合原理。在电磁耦合方式中,阅读器的天线将阅读器产生的读写射频能量以电磁波的方式发送到定向的空间范围内,形成阅读器的有效阅读区域,位于阅读器有效阅读区域中的射频标签从阅读器天线发出的电磁场中提取工作电源,并通过射频标签的内部电路及标签天线将标签内存的数据信息传送到阅读器。电磁耦合与电感耦合的差别在于电磁耦合方式中阅读器将射频能量以电磁波的形式发送出去;在电感耦合方式中,阅读器将射频能量束缚在阅读器电感线圈的周围,通过交变闭合的线圈磁场,沟通阅读器线圈与射频标签线圈之间的射频通道,没有向空间辐射电磁能量。
射频识别系统工作过程中,空间传输通道中发生的过程可归结为三种事件模型:
(1)数据交换是目的;
(2)时序是数据交换的实现方式;
(3)能量是时序得以实现的基础。
下面以此三种事件模型的描述来介绍射频识别系统的典型工作方式与工作流程。
1、能量
阅读器向射频标签供给射频能量。对于无源射频标签来说,其工作所需的能量即由该射频能量中取得(一般由整流方法将射频能量转变为直流电源存在标签中电容器里);对于(半)有源射频标签来说,该射频能量的到来起到了唤醒标签转入工作状态的作用。完全有源射频标签一般不利用阅读器发出的射频能量,因而阅读器可以较小的能量发射取得较远的通信距离。移动通信中的基站与移动台之间的通信方式可归入该类模式。
2、时序
对于双向系统(阅读器向射频标签发送命令与数据、射频标签向阅读器返回所存贮的数据)来说,阅读器一般处于主动状态,即阅读器发出询问后,射频标签予以应答,称这种方式为阅读器先讲方式。另外一种情况是射频标签先讲方式,即射频标签满足工作条件后,首先自报家门,阅读器根据射频标签的自报家门,进行记录或进一步发出一些询问信息与射频标签构成一个完整对话达成阅读器对射频标签进行识别的目的。
射频识别系统应用中根据阅读器读写区域中允许出现单个射频标签或多个射频标签的不同,将射频识别系统称为单标签识别系统,或简称为射频识别系统,与多标签识别系统。在阅读器的阅读范围内有多个标签时,对于具有多标签识读功能的射频识别系统来说,一般情况下,阅读器处于主动状态,即阅读器先讲方式。阅读器通过发出一系列的隔离指令,使得读出范围内的多个射频标签逐一或逐批地被隔离(令其睡眠)出去,最后保留一个处于活动状态的标签与阅读器建立无冲撞的通信。通信结束后将当前活动标签置为第三态(可称其为休眠状态,只有通过重新上电,或特殊命令,才能解除休眠),进一步由阅读器对被隔离(睡眠)的标签发出唤醒命令唤醒一批(或全部)被隔离的标签,使其进入活动状态,再进一步隔离,选出一个标签通信。如此重复,阅读器可读出阅读区域内的多个射频标签信息,也可以实现对多个标签分别写入指定的数据。
实现多标签的读取,现实应用中也有采用标签先讲方式的应用。多标签读写问题是射频识别技术及应用中面临的一个较为复杂的问题,目前已有多种实用方法解决这一问题。解决方案的评价依据,一般考虑以下三个因素:
(1)多标签读取时待读标签的数目;
(2)单位时间内识别标签数目的概率分布;
(3)标签数目与单位时间内识读标签数目概率分布的联合评估。
理论分析表明,现有的方法都有一定的适用范围,需根据具体应用情况,结合上述三点因素对多标签读取方案给出合理评价,选出适合具体应用的方案。多标签读取方案涉及到射频标签与阅读器之间的协议配合,一旦选定,不易更改。
对于无多标签识读功能的射频识别系统来说,当阅读器的读写区域内同时出现多个标签时,由于多标签同时响应阅读器发出的询问指令,会造成阅读器接收信息相互冲突而无从读取标签信息,典型情况是一个标签信息也读不出来。
3、数据传输
射频识别系统所完成的功能可归结为数据获取的一个便利手段,因而国外也有将其归为自动收集数据ADC(Automatic Data Capture)技术范畴。射频识别系统中的数据交换包含两个方面的含义:
(1)从阅读器向射频标签方向的数据交换;
(2)从射频标签到阅读器方向的数据交换。
根据具体实现系统的不同,以及理解层面的不同,上述两个方面的含义会有不同的理解和解释,下面分别给予简单讨论。
3.1.从阅读器向射频标签方向的数据交换
从射频识别系统实现过程中的纯技术层面来说,如果将注意力放在射频标签中存贮信息的注入方式来说,阅读器向射频标签方向的数据交换可分为两种情况,即有线写入方式和无线写入方式。具体采用何种方式,需结合应用系统需求、代价,技术实现的难易程度等因素来定。
在有线写入方式下,阅读器的作用是向射频标签(中的存贮单元)写入数据信息。阅读器更多地被称为编程器。根据射频标签存贮单元及编程写入控制电路的设计情况,写入可以是一次性写入不能修改,也可以是允许有线多次改写的情形。另外一种写入情形是,在绝大多数通用射频识别系统应用中,每个射频标签要求具有唯一的标识。这种唯一的标识被称为射频标签的ID号,通常在标签出厂时已被固化在射频标签内,用户无法修改。ID号的固化过程可以在射频标签芯片生产过程中完成,也可以在射频标签应用指定后的初始化过程中完成。无论在何时完成,都是以有线(解触)方式实现ID号的写入。
对于声表面波SAW射频标签以及其它无芯片射频标签来说,一般均在标签制造过程中将标签ID号固化到标签记忆体中。
无线写入方式是射频识别系统中阅读器向射频标签方向数据交换的另外一种情况。根据射频识别系统实现技术方面的一些原因,一般情况下应尽可能地不要采用无线写入方式,尤其是在射频识别系统工作过程中。这种建议的主要原因有以下几点:
(1)具有无线写入功能的射频识别系统属于相对复杂的系统,能够采用简单系统解决应用问题即采用简单系统是一般的工程设计原理。其背后隐含着简单系统较复杂系统成本更低、可靠性更高、培训、维护成本更低。
(2)采用集成电路芯片的射频标签写入信息要求的能量比读出信息要求的能量要大得多,可以10倍的量级进行估算。
这就造成射频标签无线写入过程花费的时间要比从中读取等量数据信息花费的时间要长许多。
(3)无线写入后一般均应对写入结果进行检验,检验的过程是一个读取过程,因而造成写入过程所需时间进一步增加。
(4)写入过程花费时间的增加非常不利于射频识别在鉴别高速移动物体方面的应用。这很容易理解,阅读器与射频标签之间经空间传输通道交换数据过程中,数据是一位一位排队串行进行的,其排队行进的速度由射频识别系统设计时决定。将射频标签看作数据信息的载体,数据信息总是以一定长度的数据位组成,因而读取或写入这些数据信息位要花费一定的时间。移动物体运动的速度越高,通过阅读区域所花费的时间就越少。当有无线写入要求时,必将限制物体的运动速度以保证有足够的时间用于写入信息。
(5)无线写入过程面临着射频标签信息的安全隐患。由于写入通道处于空间暴露状态,这给蓄谋攻击者提供了改写标签内容的机会。
另一方面,如果将注意力放在阅读器向射频标签是否发送命令方面,也可分为两种情况,即射频标签只接受能量激励和既接受能量激励也接受阅读器代码命令。
射频标签只接受能量激励的系统属于较简单的射频识别系统。这种射频识别系统一般不具备多标签识别能力。射频标签在其工作频带内的射频能量激励下,被唤醒或上电,同时将标签存贮的信息反射出来。目前在用的铁路车号识别系统即采用这种方式工作。
同时接受能量激励和阅读器代码命令的系统属于复杂射频识别系统。射频标签接受阅读器的指令无外乎是为了做两件事,即无线写入和多标签读取。
3.2.从射频标签向阅读器方向的数据交换
射频标签的工作使命即是实现由标签向阅读器方向的数据交换。其工作方式包括:
(1)射频标签收到阅读器发送的射频能量时,即被唤醒并向阅读器反射标签存贮的数据信息;
(2)射频标签受到阅读器发送的射频能量被激励后,根据接收到的阅读器的指令情况转入发送数据状态或"睡眠/休眠"状态。
从工作原理上来说,第一种工作方式属单向通信,第二种工作方式为半双工双向通信。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 加入中科因仑

本版积分规则

快速回复 返回顶部 返回列表