查看: 1478|回复: 0
打印 上一主题 下一主题

独立按键控制跑马灯的方向。

[复制链接]
跳转到指定楼层
沙发
发表于 2015-9-24 08:29:11 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
独立按键控制跑马灯的方向。

开场白:
上一节讲了多任务并行处理两路跑马灯的程序。这一节要教会大家一个知识点:如何通过一个中间变量把按键跟跑马灯的任务有效的关联起来。
具体内容,请看源代码讲解。

(1)硬件平台:基于朱兆祺51单片机学习板。用矩阵键盘中的S1键作为改变方向的独立按键,记得把输出线P0.4一直输出低电平,模拟独立按键的触发地GND。

(2)实现功能:
第1个至第8个LED灯一直不亮。在第9个至第16个LED灯,依次逐个亮灯并且每次只能亮一个灯。按一次独立按键S1,将会更改跑马灯的运动方向。

(3)源代码讲解如下:
#include "REG52.H"

#define const_time_level_09_16  300  //第9个至第16个LED跑马灯的速度延时时间

#define const_voice_short  40   //蜂鸣器短叫的持续时间

#define const_key_time1  20    //按键去抖动延时的时间


void initial_myself();   
void initial_peripheral();
void delay_short(unsigned int uiDelayShort);
void delay_long(unsigned int uiDelaylong);

void led_flicker_09_16(); //第9个至第16个LED的跑马灯程序,逐个亮并且每次只能亮一个.
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01);
void led_update();  //LED更新函数
void T0_time();  //定时中断函数

void key_service(); //按键服务的应用程序
void key_scan(); //按键扫描函数 放在定时中断里

sbit hc595_sh_dr=P2^3;   
sbit hc595_st_dr=P2^4;  
sbit hc595_ds_dr=P2^5;  

sbit beep_dr=P2^7; //蜂鸣器的驱动IO口
sbit key_sr1=P0^0; //对应朱兆祺学习板的S1键
sbit key_gnd_dr=P0^4; //模拟独立按键的地GND,因此必须一直输出低电平

unsigned char ucKeySec=0;   //被触发的按键编号

unsigned int  uiKeyTimeCnt1=0; //按键去抖动延时计数器
unsigned char ucKeyLock1=0; //按键触发后自锁的变量标志

unsigned int  uiVoiceCnt=0;  //蜂鸣器鸣叫的持续时间计数器

unsigned char ucLed_dr1=0;   //代表16个灯的亮灭状态,0代表灭,1代表亮
unsigned char ucLed_dr2=0;
unsigned char ucLed_dr3=0;
unsigned char ucLed_dr4=0;
unsigned char ucLed_dr5=0;
unsigned char ucLed_dr6=0;
unsigned char ucLed_dr7=0;
unsigned char ucLed_dr8=0;
unsigned char ucLed_dr9=0;
unsigned char ucLed_dr10=0;
unsigned char ucLed_dr11=0;
unsigned char ucLed_dr12=0;
unsigned char ucLed_dr13=0;
unsigned char ucLed_dr14=0;
unsigned char ucLed_dr15=0;
unsigned char ucLed_dr16=0;

unsigned char ucLed_update=0;  //刷新变量。每次更改LED灯的状态都要更新一次。


unsigned char ucLedStep_09_16=0; //第9个至第16个LED跑马灯的步骤变量
unsigned int  uiTimeCnt_09_16=0; //第9个至第16个LED跑马灯的统计定时中断次数的延时计数器

unsigned char ucLedStatus16_09=0;   //代表底层74HC595输出状态的中间变量
unsigned char ucLedStatus08_01=0;   //代表底层74HC595输出状态的中间变量

unsigned char ucLedDirFlag=0;   //方向变量,把按键与跑马灯关联起来的核心变量,0代表正方向,1代表反方向

void main()
  {
   initial_myself();  
   delay_long(100);   
   initial_peripheral();
   while(1)   
   {
      led_flicker_09_16(); //第9个至第16个LED的跑马灯程序,逐个亮并且每次只能亮一个.
          led_update();  //LED更新函数
      key_service(); //按键服务的应用程序
   }

}


void key_scan()//按键扫描函数 放在定时中断里
{  

  if(key_sr1==1)//IO是高电平,说明按键没有被按下,这时要及时清零一些标志位
  {
     ucKeyLock1=0; //按键自锁标志清零
     uiKeyTimeCnt1=0;//按键去抖动延时计数器清零,此行非常巧妙,是我实战中摸索出来的。      
  }
  else if(ucKeyLock1==0)//有按键按下,且是第一次被按下
  {
     uiKeyTimeCnt1++; //累加定时中断次数
     if(uiKeyTimeCnt1>const_key_time1)
     {
        uiKeyTimeCnt1=0;
        ucKeyLock1=1;  //自锁按键置位,避免一直触发
        ucKeySec=1;    //触发1号键
     }
  }



}


void key_service() //按键服务的应用程序
{
  switch(ucKeySec) //按键服务状态切换
  {
    case 1:// 改变跑马灯方向的按键 对应朱兆祺学习板的S1键

          if(ucLedDirFlag==0) //通过中间变量改变跑马灯的方向
                  {
                     ucLedDirFlag=1;
                  }
                  else
                  {
                           ucLedDirFlag=0;
                  }

          uiVoiceCnt=const_voice_short; //按键声音触发,滴一声就停。
          ucKeySec=0;  //响应按键服务处理程序后,按键编号清零,避免一致触发
          break;        

  }               
}




void led_update()  //LED更新函数
{

   if(ucLed_update==1)
   {
       ucLed_update=0;   //及时清零,让它产生只更新一次的效果,避免一直更新。

       if(ucLed_dr1==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x01;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xfe;
           }

       if(ucLed_dr2==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x02;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xfd;
           }

       if(ucLed_dr3==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x04;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xfb;
           }

       if(ucLed_dr4==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x08;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xf7;
           }


       if(ucLed_dr5==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x10;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xef;
           }


       if(ucLed_dr6==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x20;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xdf;
           }


       if(ucLed_dr7==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x40;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xbf;
           }


       if(ucLed_dr8==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x80;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0x7f;
           }

       if(ucLed_dr9==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x01;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xfe;
           }

       if(ucLed_dr10==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x02;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xfd;
           }

       if(ucLed_dr11==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x04;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xfb;
           }

       if(ucLed_dr12==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x08;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xf7;
           }


       if(ucLed_dr13==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x10;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xef;
           }


       if(ucLed_dr14==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x20;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xdf;
           }


       if(ucLed_dr15==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x40;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xbf;
           }


       if(ucLed_dr16==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x80;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0x7f;
           }

       hc595_drive(ucLedStatus16_09,ucLedStatus08_01);  //74HC595底层驱动函数

   }
}

void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01)
{
   unsigned char i;
   unsigned char ucTempData;
   hc595_sh_dr=0;
   hc595_st_dr=0;

   ucTempData=ucLedStatusTemp16_09;  //先送高8位
   for(i=0;i<8;i++)
   {
         if(ucTempData>=0x80)hc595_ds_dr=1;
         else hc595_ds_dr=0;

         hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(15);
         hc595_sh_dr=1;
         delay_short(15);

         ucTempData=ucTempData<<1;
   }

   ucTempData=ucLedStatusTemp08_01;  //再先送低8位
   for(i=0;i<8;i++)
   {
         if(ucTempData>=0x80)hc595_ds_dr=1;
         else hc595_ds_dr=0;

         hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(15);
         hc595_sh_dr=1;
         delay_short(15);

         ucTempData=ucTempData<<1;
   }

   hc595_st_dr=0;  //ST引脚把两个寄存器的数据更新输出到74HC595的输出引脚上并且锁存起来
   delay_short(15);
   hc595_st_dr=1;
   delay_short(15);

   hc595_sh_dr=0;    //拉低,抗干扰就增强
   hc595_st_dr=0;
   hc595_ds_dr=0;

}

/* 注释一:
* 以下程序,要学会如何通过中间变量,把按键和跑马灯的任务关联起来
*/

void led_flicker_09_16() //第9个至第16个LED的跑马灯程序,逐个亮并且每次只能亮一个.
{
  switch(ucLedStep_09_16)
  {
     case 0:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零

                           if(ucLedDirFlag==0)  //正方向
                           {
                  ucLed_dr16=0;  //第16个灭
                  ucLed_dr9=1;  //第9个亮

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=1; //切换到下一个步骤
                           }
                           else  //反方向
                           {
                  ucLed_dr15=1;  //第15个亮
                  ucLed_dr16=0;  //第16个灭

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=7; //返回上一个步骤
                           }
           }
           break;
     case 1:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零

                           if(ucLedDirFlag==0)  //正方向
                           {
                  ucLed_dr9=0;  //第9个灭
                  ucLed_dr10=1;  //第10个亮

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=2; //切换到下一个步骤
                           }
                           else  //反方向
                           {
                  ucLed_dr16=1;  //第16个亮
                  ucLed_dr9=0;  //第9个灭

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=0; //返回上一个步骤
                           }
           }
           break;
     case 2:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零

                           if(ucLedDirFlag==0)  //正方向
                           {
                  ucLed_dr10=0;  //第10个灭
                  ucLed_dr11=1;  //第11个亮

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=3; //切换到下一个步骤
                           }
                           else  //反方向
                           {
                  ucLed_dr9=1;  //第9个亮
                  ucLed_dr10=0;  //第10个灭

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=1; //返回上一个步骤
                           }
           }
           break;
     case 3:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零

                           if(ucLedDirFlag==0)  //正方向
                           {
                  ucLed_dr11=0;  //第11个灭
                  ucLed_dr12=1;  //第12个亮

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=4; //切换到下一个步骤
                           }
                           else  //反方向
                           {
                  ucLed_dr10=1;  //第10个亮
                  ucLed_dr11=0;  //第11个灭

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=2; //返回上一个步骤
                           }
           }
           break;
     case 4:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零

                           if(ucLedDirFlag==0)  //正方向
                           {
                  ucLed_dr12=0;  //第12个灭
                  ucLed_dr13=1;  //第13个亮

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=5; //切换到下一个步骤
                           }
                           else  //反方向
                           {
                  ucLed_dr11=1;  //第11个亮
                  ucLed_dr12=0;  //第12个灭

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=3; //返回上一个步骤
                           }
           }
           break;
     case 5:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零

                           if(ucLedDirFlag==0)  //正方向
                           {
                  ucLed_dr13=0;  //第13个灭
                  ucLed_dr14=1;  //第14个亮

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=6; //切换到下一个步骤
                           }
                           else  //反方向
                           {
                  ucLed_dr12=1;  //第12个亮
                  ucLed_dr13=0;  //第13个灭

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=4; //返回上一个步骤
                           }
           }
           break;
     case 6:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零

                           if(ucLedDirFlag==0)  //正方向
                           {
                  ucLed_dr14=0;  //第14个灭
                  ucLed_dr15=1;  //第15个亮

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=7; //切换到下一个步骤
                           }
                           else  //反方向
                           {
                  ucLed_dr13=1;  //第13个亮
                  ucLed_dr14=0;  //第14个灭

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=5; //返回上一个步骤
                           }
           }
           break;
     case 7:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零

                           if(ucLedDirFlag==0)  //正方向
                           {
                  ucLed_dr15=0;  //第15个灭
                  ucLed_dr16=1;  //第16个亮

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=0; //返回到开始处,重新开始新的一次循环
                           }
                           else  //反方向
                           {
                  ucLed_dr14=1;  //第14个亮
                  ucLed_dr15=0;  //第15个灭

                  ucLed_update=1;  //更新显示
                  ucLedStep_09_16=6; //返回上一个步骤
                           }
           }
           break;

   }

}


void T0_time() interrupt 1
{
  TF0=0;  //清除中断标志
  TR0=0; //关中断


  if(uiTimeCnt_09_16<0xffff)  //设定这个条件,防止uiTimeCnt超范围。
  {
      uiTimeCnt_09_16++;  //累加定时中断的次数,
  }

  key_scan(); //按键扫描函数

  if(uiVoiceCnt!=0)
  {
     uiVoiceCnt--; //每次进入定时中断都自减1,直到等于零为止。才停止鸣叫
     beep_dr=0;  //蜂鸣器是PNP三极管控制,低电平就开始鸣叫。
  }
  else
  {
     ; //此处多加一个空指令,想维持跟if括号语句的数量对称,都是两条指令。不加也可以。
     beep_dr=1;  //蜂鸣器是PNP三极管控制,高电平就停止鸣叫。
  }

  TH0=0xf8;   //重装初始值(65535-2000)=63535=0xf82f
  TL0=0x2f;
  TR0=1;  //开中断
}

void delay_short(unsigned int uiDelayShort)
{
   unsigned int i;  
   for(i=0;i<uiDelayShort;i++)
   {
     ;   //一个分号相当于执行一条空语句
   }
}

void delay_long(unsigned int uiDelayLong)
{
   unsigned int i;
   unsigned int j;
   for(i=0;i<uiDelayLong;i++)
   {
      for(j=0;j<500;j++)  //内嵌循环的空指令数量
          {
             ; //一个分号相当于执行一条空语句
          }
   }
}


void initial_myself()  //第一区 初始化单片机
{
/* 注释二:
* 矩阵键盘也可以做独立按键,前提是把某一根公共输出线输出低电平,
* 模拟独立按键的触发地,本程序中,把key_gnd_dr输出低电平。
* 朱兆祺51学习板的S1就是本程序中用到的一个独立按键。
*/
  key_gnd_dr=0; //模拟独立按键的地GND,因此必须一直输出低电平

  beep_dr=1; //用PNP三极管控制蜂鸣器,输出高电平时不叫。

  TMOD=0x01;  //设置定时器0为工作方式1


  TH0=0xf8;   //重装初始值(65535-2000)=63535=0xf82f
  TL0=0x2f;


}

void initial_peripheral() //第二区 初始化外围
{
  EA=1;     //开总中断
  ET0=1;    //允许定时中断
  TR0=1;    //启动定时中断

}

总结陈词:
这一节讲了独立按键控制跑马灯的方向。如果按键要控制跑马灯的速度,我们该怎么编写程序呢?欲知详情,请听下回分解-----独立按键控制跑马灯的速度。转载

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 加入中科因仑

本版积分规则

快速回复 返回顶部 返回列表